
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 147

On the Performance of the Python Programming

Language for Serial and Parallel

Scientific Computations

Samriddha Prajapati
1
, Chitvan Gupta

2

Student, CSE, NIET, Gr. NOIDA, India1

Assistant Professor, NIET, Gr. Noida, India 2

Abstract: In this paper the performance of scientific applications are discussed by using Python programming
language. Firstly certain techniques and strategies are explained to improve the computational efficiency of serial

Python codes. Then the basic programming techniques in Python for parallelizing scientific applications have been

discussed. It is shown that an efficient implementation of array-related operations is essential for achieving better

parallel [11] performance, as for the serial case. High performance can be achieved in serial and parallel computation

by using a mixed language programming in array-related operations [11]. This has been proved by a collection of

numerical experiments. Python [13] is also shown to be well suited for writing high-level parallel programs in less

number of lines of codes.

Keywords: Numpy, Pypar, Scipy, F2py.

I BACKGROUND AND INTRODUCTION

Earlier there was a strong tradition among computational

scientists to use compiled languages, in particular Fortran

77 and C, for numerical [2] simulation. As there is

increase in demand for software flexibility during the last

decade, it has also popularized more advanced compiled

languages C++ and FORTRAN 95. Whereas in recent

days many computational scientists programmers and

engineers have moved away from compiled languages to

considered problem solving environments, for example:

Maple, Octave, Matlab, and R (or S-Plus). Matlab has

been very popular and is regarded as the preferred
development [8] platform for numerical software by a

significant portion of the of the Computational Science

and Engineering community. Lots of the problems are

solved in Matlab. It may seem a paradox that

computational scientists, who claim to demand as high

performance as possible in their applications, use Matlab.

The success of Matlab and similar interpreted

environments is due to:

i. Integration of simulation and visualization
ii. a simple and clean syntax of the command language

iii. Built-in functions operating efficiently on arrays in

compiled code

iv. Interactive execution of commands with immediate

feedback

v. A rich standardized library of numerical

functionality that is conveniently available

vi. Numerical operations that are fast enough in plain

Matlab[2]

vii. Documentation and support

Many scientists normally feel more productive in Matlab

than with compiled languages and separate visualization

tools. The programming language Python is now coming

up as a potentially competitive alternative to Matlab,

Octave, and other environments. Python, when extended

with numericaland visualization modules, shares many of

Matlab’s advantages are as mentioned above [2]. One of

the particular advantage of Python is that the language is

very rich and powerful, especially in comparison with
Matlab, Fortran, and C. In particular, Python is an object-

oriented language that supports operator overloading and

offers a cross-platform interface to operator system

functionality. Advanced C++ programmers can easily

mirror their software designs in Python and even obtain

more flexibility and elegance.

Although Matlab supports object-oriented programming

but creating classes in Python is much more convenient.

Convenience seems to be a key issue when scientists

choose an interpreted scripting language over a compiled

language today. Another advantage of Python is that it is
much simpler than in most other environments rather than

interfacing legacy software written in Fortran, C, and C++.

This is because Python was designed to be extendible with

compiled code for efficiency, and several tools are

available which make the integration of Python and its

libraries easier. So with the above properties and the

interfacing capabilities, the Python represents a best

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 148

environment for doing parallel programming for

computational science [11]. The language has already

attracted significant interest among computational

scientists for some years. A key question for the

community is numerical efficiency of Python-based

computing platforms. The aim of this paper is to quantify

such numerical efficiency [2].

It is also need to be mentioned that Python is being used in
a much broader context than scientific programming only.

In computer science, the language has a strong and

steadily increasing position as a general-purpose

programming tool for diverse places such as system

administration, dynamic web sites, distributed systems,

software Engineering, graphical user interfaces,

computational steering, search engines, education and also

in large-scale business applications. Investigating a

scientific problem with the aid of computers requires

software which performs a vast range of different tasks:

user interfaces (command line, files, web and the graphical
windows), I/O management, numerical computing, data

analysis, visualization, file and directory manipulation,

and report generation. High computational efficiency is

normally needed a few of these tasks and the number of

statements calling for ultimate efficiency is often just a

few percentage of a whole software package. The non-

numerical tasks are usually more efficiently taken out in a

scripting environment like Python than in compiled

languages. The classical scripting way is to let a script of

python call up stand-alone simulation programs and

manage the whole computational and data analysis

pipeline. However as computational scientists and
Engineers move to the Python, they will probably like to

implement the numeric in Python. In this paper it is

explained that how to implement the numeric in Python

using many techniques with different degrees of

programming and computational efficiency.

The comparison of performance for Python with

corresponding implementations in Fortran 77 and C is also

explained. As we go along, we shall also point out

inefficient constructs in Python programs. It is fair to say

that the core of this Python programming language is’nt
exactly suitable for scientific applications involving

intensive computations. This is mainly due to slow

execution of long nested loops and the lack of efficient

array data structures. However, the add-on package

Numerical Python, often referred to as NumPy, provides

contiguous multi-dimensional array structures with a large

library of array operations implemented efficiently in C.

The NumPy array evaluating facilities resemble those of

Matlab, with respect to functions and computational

efficiency.The problem with slow loops can be highly

relieved through vectorization i.e., expressing the loop

semantics via a group of basic NumPy array operations,
where each problem involves a loop over array entries

efficiently implemented in C. The same technique is well-

known from programming in Matlab and other interpreted

environments where loops run slowly.

Vectorised Python code may still run a way of 3–10

slower than optimized implementations in pure Fortran or

C/C++ [7]. In some of cases, or in cases where

vectorization of an algorithm is inconvenient,

computation-intensive Python loops should be terminated

directly to Fortran or C/C ++ . In a Python program one
cannot distinguish between a function implemented in

C/C++/FORTRAN and a function implemented in pure

Python. With the F2PY[9] tool,

Coupling Python with Fortran is done almost

automatically. As a conclusion, combining core Python

with NumPy and Fortran/C/C++ code migration constitute

a convenient and efficient scientific computing

environment on serial computers.

II. PERFORMANCE OF SERIAL PYTHON CODES

We will discuss in this paragraph how to manage serial

scientific applications using Python. In particular, the

using of efficient array objects from the NumPy package,

the efficiency of Python for-loops, and mixed-language

programming will be studied. These issues are also of

fundamental importance for an efficient parallelization of

scientific applications in Python, which is to be addressed

later. For any computation-based applications that are

implemented in a traditional language, such as Fortran 77

or C, the main data construction are normally made up of

arrays. The central of the computations is in the form of

traversing the arrays and carrying out computing
operations in (nested) loops, such as do-loops in

FORTRAN and for-loops in C. Therefore, our efficiency

investigations in the present section focus on the typical

loops that are used as the building blocks in scientific

codes. Array computing in Python employ the NumPy

package. This package has a primary module defining the

array data structure and efficient C functions operating on

arrays. Presently two basic versions of this module exist.

Numeric is long established module from the mid 1990s,

while numarray is a more proper new implementation. The

latter is meant as a replacement of the former, and no
further development [8] of Numeric takes place. However,

there are many numerical Python [2] code utilizing

Numeric than we expect both modules to co-exist for more

time. A lot of scripts written for Numeric will

automatically work for numarray, since the programming

interface of the two modules are very same. However,

there are unfortunately some differences between Numeric

and numarray, which may require manual editing to

replace one module by the other. (The

py4cs.numpytoolsmodule helps writing scripts that can

run unaltered with both modules.) Many tools for

scientific computing with Python, including the F2PY [9]
program and pyparmodule to be used later in this paper.

The very useful SciPy package with lots of numerical

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 149

computing functionality also works best with Numeric.

Therefore, most of the experiments reported in this paper

involve Numeric.

All experiments reported in this section are collected in

software that can be downloaded and executed in own

computing environment. The source code files also

document precisely how our experiments are implemented

and conducted.

The arange function allocates a NumPy array with values
from a start value to a stop value with a specified

increment. Showing a double precision real-value array of

lengthis done by the zeros (n, Float) call. Traversing an

array can be done by a for loop as shown, where x range is

a function that returns indices 0, 1,2, and up to the length

of x in this case. Indices in NumPy arrays always start at

0. The for-loop in Example 1 requires about 9 seconds on

our test computer for an array length of one million. As a

comparison, a corresponding plain for loop in Matlab is

about 16 times faster than the plain Python for-loop.

Switching from Numeric to numarray increases the

CPU[5] time by 32%

In the present example, there is no need to allocate y

beforehand, because an array is created by the vector

Expression sin(x)*cos(x)+ x**2. Table 1 shows

performance results for various vectorized versions and

other implementations of the present array computation.

From Table 1 we see that this vectorized version runs
about 9 times faster than the pure Python version in

Example 1.

The reader should notice that the expression

sin(x)*cos(x)+ x**2 works for both scalar and array

arguments. (In contrast, Matlab requires special operators

like.* for array arithmetics.) We can thus write a function

I(x), which evaluates the expression for both scalar and

array arguments, as illustrated below.

The function call I(x[i]) in the above for-loop adds an

overhead of about 8% compared with inlining the

mathematical expressions in Example 1. In general,

function calls in Python are expensive.

III. PARALLELIZING SERIAL PYTHON CODES

Before running on any parallel [11] program on a

computing machine, a serial program must be parallelized

first. In this section, we will explain how to parallelize

serial structured Python [13] computations. Here we will

see that the high-level programming of Python [13] gives

rise to parallel codes [12] of a clean and compact style.

A. Parallelization in Message-passing [10] There

are several different programming approaches to

implementing parallel [11] programs. In this paper,

however, we have chosen to restrict our attention to

message-passing[10] based parallelization . This is
because the message-passing[10] approach is most widely

used and has advantages with respect to both performance

and flexibility. We note that a message between two

neighboring processors contains simply a sequence of data

items, typically a vector of numerical values. For example

of message passing[10] programming, let us consider the

simple case of parallelizing a five-point-stencil operation,

which is in fact a two-dimensional simplification. That is,

the stencil operation is carried out on the entries of a two-

dimensional global array um, and the results are stored in

another two-dimensional global array u.

Work Load Division.
The first step of parallelizing the five-point-stencil

operation is to divide the computational work among P

processors, which are supposed to form an Nx×Ny=P

lattice. A straight forward work division is to partition the

interior array entries of u and um disjointly into P=Nx×Ny

small rectangular portions, using horizontal and vertical

“cutting lines”. If the dimension of u and um is

(nx+1)×(ny+1), then the (nx−1)×(ny−1)interior entries are

divided into Nx×Nyrectangles. For a processor identified
by an index tuple (l, m), where l<Nx and m<Ny, it is

assigned with (nlx−1)×(nmy−1)interior entries. Load

balancing requires that the processors have approximately

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 150

the same work amount, i.e., nlx−1≈(nx−1)/Nxand

nmy−1≈(ny−1)/Ny.

Local Data Structure
The above work division means that processor (l, m) is

only responsible for updating (nlx−1)×(nmy−1)entries of

u. To avoid having to repeatedly borrow um values from

the neighboring processor when updating those u entries
lying immediately beside each internal boundary, as

depicted in Fig. 1, the data structure of the local arrays

should include one layer of “ghost entries” around the

(nlx−1)×(nmy−1) assigned entries. That is, two local two-

dimensional arrays u_loc and um_loc, both of dimension

(nlx+1)×(nmy+1), areused on processor(l, m). Note that no

processor needs to construct the entire u and um arrays,

and that computing the layer of ghost entries in u_loc is

the responsibility of neighboring processors.

Local Computation
Assuming that the dimensions nlx and nmy are

represented as variables nx_loc and ny_loc in a

Python[13] program. The parallel[11] execution of a five-

point-stencil operation, distributed on P=Nx×Ny

processors, can be implemented as the following

Python[13] code segment:

Example 4. F2PY python implementation in Local

computation

Fig1. Local Python implementation of a five-point-stencil

Need for Communication
After the code segment in fig1. is concurrently executed

on each processor, we have only updated the

(nlx−1)×(nmy−1) interior entries of u_loc . In a typical

parallel application[12], the u_loc array will probably
participate in later computations, with a similar role as that

of the um_loc array in Example 4. Therefore, we also need

to update the layer of ghost entries in u_loc . This

additional update operation means that two and two

neighboring processors exchange values across their

internal boundary. More specifically, when processor (l,

m)has a neighbor (l+1,m)in the upper x-direction (eg.

l<Nx-1), processor(l, m) needs to send a vector containing

values of u_loc[nx_loc-1,:], as a message, to

processor(l+1,m). In return, processor (l, m) receives a

vector of values from processor (l+1,m), and these

received values are assigned to the entries of
u_loc[nx_loc,:]. This procedure of message exchange [10]

across an internal boundary has also to be carried out with

each of the other possible neighbors, i.e. processors

(l−1,m),(l, m+1), and (l, m−1).

IV. PYTHON IMPLEMENTATION OF

PARALLELIZATION TASKS

Although the parallelization example from Section III is

extremely simple, it nevertheless demonstrates the

generic tasks that are present in any parallel[11] numerical
code[2] . Using an abstract description, we can summarize

thesegeneric tasks as follows:

Workload partitioning, i.e., divide the global data into

local data to be owned exclusively by the processors

Serial computations using only local data items on each

processor

1) Preparation of the outgoing messages, i.e., extract

portions of some local data into vectors of values,

where each vector works as a message

2) Message exchange between neighboring processors

3) Extraction of the incoming message

4) Update portions of some local data (e.g. the ghost
entries) using values of the incoming messages of the

above five generic tasks, the first task normally only

needs to be executed once, in the beginning of a

parallel application, whereas the second task concerns

purely serial codes. Therefore, under the assumption

that the serial codes have good serial performance, the

overall performance of a parallelized application

depends heavily on the last three tasks. We will show

in this section how these communication related tasks

can be implemented in Python. The efficiency of the

parallel [12] Python[13] implementation is studied by
detailed measurements.

Our attention will be restricted to parallelizing numerical

applications that are associated with structured

computational meshes. This is because ensuring the

parallelization quality of an unstructured computing

application requires the same principles as for a structured

computing application. Like a structured computing

application, an unstructured computing application also

uses arrays to constitute its data structure. The typical

difference is that an unstructured computing application

only uses flat one-dimensional arrays, and traversing the

entries of an array is often in an unstructured fashion, and
the number of neighbors may also vary considerably from

processor toprocessor.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 151

V PYTHON MPI BINDINGS THROUGH PYPAR

Let us start with looking at message exchanges between

the processorsin a Python [13] program. For the purpose

of efficiency, we have chosen thepyparpackage because

of its light-weight implementation and user-friendly

syntax. As we have mentioned before, the pyparpackage

provides a Python[13] wrapper of a subset of the standard
MPI routines. The underlying implementation of pyparis

done in the C programming language, as an extension

module that can be loaded into Python. The following is

an example of using the two most important functions in

pypar, namely pypar.sendand pypar.receive:

Example 5 Functions of pypar

In the following Example 6 there is Array Slicing in

Preparing and Extracting Messages is shown.When

parallelizing array-based structured computations,

Example 6. Array Slicing in Preparing and Extracting

Messages

we only use portions of a local array (such as its ghost

layer) in the message exchanges. The slicing functionality
of NumPy arrays is very important for both the task of

preparing an outgoing message and the task of extracting

an incoming message. The resulting Python

implementation is extremely compact and efficient. Let us

give a pyparimplementation of the operation that updates

the ghost layer of the local two-dimensional array u_loc,

which is needed after executing the code as given above in

example 6. It should be noted that the above example has

merged together the three generic tasks, namely preparing

outgoing messages, exchanging messages, and extracting

incoming messages. The actual sequence of invoking

thesend and receive commands may need to alternate from

processor to processor for avoiding dead locks. It is of

vital importance for the performance to use the slicing
functionality to prepare outgoing messages, instead of

using for -loops to copy a desired slice of a multi-

dimensional array, entry by entry, into an outgoing

message. Similarly, extracting the values of an incoming

message should also be accomplished by the slicing

functionality. For a receive command that is frequently

invoked, it is also important to reuse the same array object

as the message buffer, i.e., buffer_x for the x-direction

communication and buffer_y for the y -direction. These

buffer array objects should thus be constructed once and

for all, using contiguous underlying memory storage. The
measurements in Section V will show that the array slicing

functionality keeps the extra cost of preparing and

extracting messages at an acceptably low level. This is

especially important for parallel [12] three-dimensional

structured computations.

A Simple Python Class Hierarchy using box

partitioning
We can observe that four of the five generic tasks in most

parallel numerical applications are independent of the

specific serial computations. Therefore, to simplify the

coding effort of parallelizing array-based structured
computations, we have devised a reusable class hierarchy

in Python. The name of its base class is BoxPartitioner,

which provides a unified Python interface to the generic

task of work load partitioning and the three generic

communication-related tasks. In addition to several

internal variables, two of the major functions in

BoxPartitionerare declared as:

i. Prepare_communication

ii. Update_internal_boundaries.

The first function is for dividing the global computational

work and preparing some internal data structures (such as
allocating data buffers for the incoming messages),

whereas the latter is meant for the update operation

VI CONCLUSION

The discussion and analysis presented, together with the

measurements in Section V, given us reasons to believe

that Python is sufficiently efficient for scientific

computing. However, “Python” implies in this context the

core language together with the Numerical Python [2]

package and frequent migration of nested loops to C/C++

and Fortran extension modules. In addition, the
programmer must avoid expensive constructs in Python. In

data structures we should use Python arrays and

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 152

computation-intensive code segments with compiled code,

either in a ready-made library such as Numerical Python

or in tailored C/C++ or FORTRAN code. Moreover, the

fully comparable measurements of Python-related parallel

wave [4] simulations against a pure C implementation also

encourage the use of Python in developing parallel

applications. The results obtained in this paper suggest a

new way of creating future scientific computing
applications. Python, with its clean and simple syntax,

high-level statements, numerous library modules,

vectorization capabilities, bindings to MPI, can be used in

large portions of an application where performance is not

first priority or when vectorized expressions are sufficient.

This will lead to shorter and more flexible code, which is

easier to read, maintain, and extend. The parts dealing

with nested loops over multidimensional arrays can be

migrated to a compiled extension module using python.

Our performance tests show that such mixed-language

applications may be as efficient as applications written
entirely in low level C or Fortran 77.

REFERENCES

[1] D. Arnold, M.A. Bond, Chilvers and R. Taylor,Hector: Distributed

objects in Python, In Proceedings of the 4th International Python

Conference, 1996.

[2] D. Ascher, P.F. Dubois, K. Hinsen, J. Hugunin and T. Oliphant,

Numerical Python, Technical report, Lawrence Livermore National

Lab.,CA, 2001. http://www.pfdubois.com/numpy/numpy.pdf.

[3] D. Beazley,Python Essential Reference, (2nd ed.), New Riders

Publishing, 2001.

[4] D. Blank, L. Meeden and D. Kumar,Python Robotics: An

environment for exploring robotics beyond LEGOs, In Proceedings

of the 34
th

SIGCSE technical symposium on Computer Science

Education, 2003, pp. 317–321.

[5] Blitz++software, http://www.oonumerics.org/blitz/.

[6] W.L. Briggs,A Multigrid Tutorial. SIAM Books, Philadelphia,

1987.

[7] A.M. Bruaset,A Survey of Preconditioned Iterative Methods,

Addison-Wesley Pitman, 1995.

[8] D. Beazley et al.,Swig 1.3 Development Documentation, Technical

report, 2004. http://www.swig.org/doc.html.

[9] F2PY software package, http://cens.ioc.ee/projects/f2py2e.

[10] Message Passing Interface Forum, MPI: A message-passing

interface standard.Internat. J. Supercomputer Appl.8(1994), 159–

416.

[11] A. Grama, A. Gupta, G. Karypis and V. Kumar, Introduction to

Parallel Computing, (2nd ed.), Addison–Wesley, 2003.

[12] W. Gropp, E. Lusk and A. Skjellum,Using MPI – Portable Parallel

Programming with the Message-Passing Interface, (2nd ed.), The

MITPress, 1999.

[13] D. Harms and K. McDonald,The Quick Python Book, Manning,

1999.

